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A Multi-Scale Approach to Mapping 
Canopy Height

Gordon M. Green, Sean C. Ahearn, and Wenge Ni-Meister

Abstract
Mapping vegetation height over large areas presents a prob-
lem of scale: height varies with the individual tree or stand, 
but the resolution of available datasets is too low to char-
acterize this variability sufficiently for many applications. 
We address this problem by fusing 1 km resolution canopy 
height data derived from satellite-based laser altimetry with 
higher-resolution land-cover data, resulting in 30 m resolution 
estimates of canopy height. These are downscaled further to 
1 m resolution by simulating individual trees. A web service 
architecture is used, which allows processing to occur on 
demand without preprocessing large datasets. We compared 
the resulting canopy volumes to reference airborne lidar data 
from 262 randomly located 1 km2 areas within nine study 
sites. Results at 30 m resolution show an RMSE of 33 percent of 
the mean reference volume and an R2 of 0.77; at 1 m the RMSE 
is 66 percent and the R2 is 0.38. 

Introduction 
Vegetation height is a key measurement used to estimate a 
variety of ecological and biophysical variables, including 
above-ground biomass, surface roughness, and stem volume. 
Global large-footprint lidar data from the Geoscience Laser 
Altimeter System (GLAS), gathered as part of the Ice, Cloud and 
land Elevation Satellite (ICESat) mission, have recently been 
used to create coarse-grained global canopy height datasets 
(Lefsky, 2010; Simard et al., 2011). However, these datasets do 
not capture the fine-grained variability inherent in vegetation 
height, particularly in disturbed or patchy areas. In contrast, 
1 m resolution datasets based on airborne lidar do characterize 
vegetation height with sufficient granularity for a wide range of 
applications, but are not available for most areas. 

Increasingly, geographic datasets are being made avail-
able over the World Wide Web using web mapping services. 
These applications deliver map images representing regions 
of interest on demand, so users need not download or store 
entire datasets to make use of the information they contain. 
While scientific datasets have long been made available for 
download over the web, part of what makes web mapping 
services particularly useful is that requests are fulfilled within 
seconds, making interactive on-the-fly processing possible.

The availability of higher-resolution land-cover data 
through web mapping services makes possible a new method of 
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quantifying canopy height: existing GLAS-based coarse-resolution 
height data can be fused with higher-resolution land-cover data 
on demand to generate more detailed canopy height maps. This 
downscaling process bridges the gap between scales in such a 
way that coarse-resolution canopy height is translated into a 
form more descriptive of the phenomenon it measures, and on-
the-fly processing means that large volumes of high-resolution 
data need not be downloaded or preprocessed to obtain informa-
tion about a specific region of interest.

We implemented a proof-of-concept application that per-
forms this downscaling on demand using a web service archi-
tecture. In this architecture, the application runs within a web 
server, using the request/response mechanism of HTTP (hyper-
text transfer protocol) to perform the downscaling. It responds 
to requests that include the bounds of an area of interest, and 
returns a canopy height surface downscaled to the maximum 
available resolution that can be efficiently generated to fit the 
dimensions of the requested area. 

The proof-of-concept application performs this down-
scaling in two parts. First, 30 m maximum height surfaces 
are estimated by combining canopy density from the 2001 
National Land Cover Database (NLCD-2001; Homer et al., 2007), 
and land-cover from NLCD-2006 (Fry et al., 2011), with 1 km 
GLAS-based estimates of height from Simard et al., 2011. 
Meter-scale canopy heights are then simulated using a sto-
chastic table lookup approach, constrained by the estimated 
30 m height values and the same NLCD data as was used in 
the 30 m process. The table lookup data consists of height 
rasters representing individual trees that were extracted from 
airborne lidar data and indexed by maximum height. These 
are selected on demand and placed randomly within each 
applicable 30 m pixel until the pixel is saturated in propor-
tion to its canopy density according to the NLCD-2001 canopy 
density product. The result is a process that simulates 1 m 
resolution canopy height models (CHMS) on demand for any 
location within the coterminous United States, while storing 
only the 1 km height and table lookup data.

An overview of the three scales is shown in Figure 1: 
the background image shows the GLAS-based 1 km resolution 
canopy height surface from Simard et al. (2011); the first inset 
shows a 30 m resolution height surface that disaggregates the 
GLAS-based height values using NLCD land-cover and NLCD 
canopy density data; and the second inset shows a 1 m simu-
lated canopy height model, based on the 30 m results and 
NLCD data. 

Questions raised by the approach include: Do the 
results provide a reasonable representation of the vertical 
and horizontal distribution of vegetation within each 1 km 
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It then performs the downscaling operation, and returns 
the results to the original requestor in the form of an HTTP 
response that includes a link to a downscaled height raster, 
which can be used for display or further processing.

We used two 30 m resolution datasets to constrain 
the downscaling process. For land-cover type, we used NLCD-
2006, which is based on more recent imagery than NLCD-2001 
(Fry et al., 2011). Because NLCD-2006 did not include a revision 
of the 2001 canopy density layer, we used NLCD-2001 for can-
opy density information. NLCD-2001 canopy density includes 
values for pixels that may be classified as non-forested, such 
as those classified as impervious surface or grassland, while 
eliminating areas that are unambiguously un-forested, such as 
water bodies (Homer et al., 2007). We chose NLCD-2006 because 
the underlying data is temporally closer to the GLAS data 
underlying the Simard, et al. (2011) dataset. We also evalu-
ated the results using land-cover data from NLCD-2001 to check 
whether the methodological and temporal differences between 
the two NLCD versions affected the results. Landsat-based 
data representing temporal changes in normalized difference 
vegetation index (NDVI), compiled from Global Land Survey 
datasets by the USGS and the National Aeronautics and Space 
Administration (NASA), and made available through web 
services by Esri and partners as described in Green (2011), 
were used to further assess the impact of temporal differences 
between datasets on the results.

GLAS-based Canopy Height
Laser altimetry data (Zwally et al., 2002) from the GLAS 
large-footprint lidar sensor has been shown in recent stud-
ies to provide moderately accurate measurements of canopy 
height with, for example, an RMSE (root mean squared error) 
of 2.2 m compared to airborne lidar in Lee et al. (2011). 

pixel? Which method of estimating the vertical distribution of 
canopy heights results in the most accurate downscaling? Do 
temporal differences in the source data affect the results? We 
address these questions by applying the downscaling process 
to the Simard et al. (2011) 1 km height dataset, and comparing 
the results to CHMS derived from airborne lidar. We test four 
types of height distributions for their effects on accuracy. To 
assess the effects of changes over time, we also test the down-
scaling process using land-cover data from both NLCD-2006 
and NLCD-2001, and use Landsat-based change data to compare 
results with and without areas identified as having changed 
between 1990 and 2005, or between 2000 and 2005. 

Source Data
Web Mapping Services
The Web Map Service (WMS) interface standard (Beaujardiere, 
2006) published by the Open Geospatial Consortium (OGC) 
defines an interface by which map data can be shared over 
the World Wide Web. It specifies the data elements required 
in each conforming HTTP request and response, such as the 
bounding coordinates and their spatial reference, the image 
format, and the pixel data type. One of the requirements of 
the standard is that WMS-compliant services must respond to 
GetMap requests, whereby map images are generated for given 
spatial extents. These requests are typically made by web-
based mapping software that displays imagery for a given area 
when a user navigates to it using an interactive map. Requests 
may also be made by any software that supports HTTP. The 
prototype application uses the WMS protocol over HTTP to 
retrieve NLCD information on demand for any requested loca-
tion within the coterminous United States, using services 
made available by the United States Geological Survey (USGS). 

Figure 1.  Sample multi-scale canopy height showing estimated height at 1 km, 30 m, and 1 m resolution 
from the study site in Lake Tahoe Basin, California.
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For this reason, the Simard et al. (2011) dataset is used here as 
the basis of the downscaling process. Its overall vertical  
accuracy was assessed at RMSE = 6.1 m, R2 = 0.5 (Simard 
et al., 2011). 

Airborne Discrete-Return Lidar
We used airborne lidar data gathered from nine study 
sites to calibrate and validate the downscaled estimates 
of canopy height. These were downloaded primarily from 
OpenTopography.org and the National Center for Airborne 
Laser Mapping (NCALM). Study site locations are shown in 
Table 1 and Figure 2. The sites were chosen based on the 
availability of datasets with sufficient sampling density 
(>1 post per m2) to characterize canopy height at the sub-tree 
level. Lidar-based 1 m bare earth digital elevation models 
(DEMS) were subtracted from their corresponding first-return 
digital surface models (DSMS) to create canopy height models 
(CHMS), mosaicked to form a single reference 1 m CHM for each 
study site. 

Reference 30 m CHMS were created by resampling the 
reference 1 m CHMS to the same resolution as the CHMS gener-
ated by the 30 m downscaling process, so the two can be 
compared. Each 30 m reference pixel was assigned the 98th 
percentile value of the 1 m pixels falling within it. The 98th 
percentile was chosen to avoid anomalously high pixels, 
while approximating the maximum height measurement 
used in the Simard et al. (2011) map. The 1 m and 30 m CHMS 
derived from airborne lidar were used for calibration and vali-
dation only, and are not part of the downscaling process. 

Each returned waveform, or shot, consists of a record indicat-
ing the timing and amplitude of energy returned from the land 
surface within a ~65 m diameter footprint ellipse, binned at 
sub-meter vertical intervals (Harding and Carabajal, 2005). 
Because the large footprint causes slope and surface rough-
ness to strongly affect the shape and extent of the returned 
waveform (see Yang et al., 2011), the effects of topography 
on the shape of the waveform need to be considered. Further, 
because GLAS shots fall along discontinuous ICESat tracks, with 
as much as 15 km between tracks at the equator and ~170 m 
between shots along satellite tracks (Schutz et al., 2005), a 
method must be developed to estimate canopy height between 
samples for most mapping applications.

Lefsky (2010) and Simard et al. (2011) created continu-
ous global canopy height maps from GLAS data, each using 
slightly different approaches. Lefsky estimated mean and 
90th percentile height on a per-patch basis, establishing patch 
boundaries using 500 m resolution data from the Moderate 
Resolution Imaging Spectroradiometer (MODIS), addressing 
the slope problem using an empirical approach based on the 
shape of the waveform. Simard et al. (2011) used a per-pixel 
regression-tree approach, based on MODIS and gridded clima-
tological data, to develop a continuous 1 km height surface 
from GLAS data acquired in 2005, eliminating shots using 
slope-based and other criteria. In Simard et al. (2011) height is 
defined as RH100, the distance from signal start to the ground 
peak of the waveform, which corresponds closely to maxi-
mum canopy height. The dataset provides height information 
for land-cover types classified as non-forested, resulting in a 
height attribution for a greater proportion of the landscape. 

Figure 2.  Study sites.

Table 1.  Study Sites with Dominant Land Cover Types (E = Evergreen Needleleaf; D = Deciduous 
Broadleaf; M = Mixed Forest; G = Grasslands; U = Urban/Mixed Forest); The Area Value 

Represents the Portion of the Site Used in this Study

		  Land Cover 	 Location	 Area	 Date 
Site	 Location	 Type	 (Lon, Lat)	 (km2)	 (m/yyyy)

1	 Boston, MA (suburban)	 U	 271.21, 42.26	 145	 6/2002
2	 Flathead Lake, MT	 E	 2113.81, 48.46	 90	 5,9/2005
3	 Independence Lake, CA	 E	 2120.33, 39.43	 43	 7/2007
4	 Lake Tahoe Basin, CA	 E	 2120.00, 38.88	 160	 8/2010
5	 Pleasant, ME	 D	 269.33, 45.55	 87	 10-11/2007
6	 Tenderfoot Creek, MT	 E	 2110.88, 46.93	 121	 9/2005
7	 Tuscaloosa, AL	 M	 287.78, 33.24	 2	 12/2010
8	 Yakima, WA	 G	 2120.53, 46.93	 25	 4/2008
9	 Yosemite National Park, CA	 E	 2119.59, 37.74	 81	 7/2007
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We used the canopy density layer to identify forested 
pixels in Step 6a because we found, based on comparisons 
with aerial photographs, that pixels classified as non-forested, 
such as impervious surface or grassland, often contain trees, 
whereas the canopy density layer indicates percent tree cover 
independent of land-cover type. The interpolation in Step 
6b is required because, without smoothing, the coarse pixel 
values in the 1 km height data cause artificial differences at 
pixel boundaries in the generated 30 m CHM. Simple weight-
ing was chosen over kriging or other more complex inter-
polators because the goal of the interpolation is to smooth 
pixel boundaries efficiently, rather than to account for spatial 
autocorrelation within the height data. The threshold and 
scaling factor set in Steps 6a and 6d, and the sampling process 
described in Step 6c, were selected as part of the calibration 
process described below. 

Because the actual vertical distribution of canopy heights 
in any location is unknown, we configured the system to sam-
ple from each of several distributions, to determine which one 
results in the most accurate downscaling overall. These are 
linear, exponential, logarithmic, and an empirical distribution 
derived by averaging the vertical distributions of randomly-
selected 30 m reference CHM pixels within the Flathead Lake, 
Montana, Lake Tahoe Basin, California, and Pleasant, Maine 
sites. These distributions are shown in Figure 4. 

One Meter Downscaling Process
The results of the 30 m downscaling process are used as the 
basis of an additional downscaling procedure that builds 1 m 
CHMS stochastically. We use the canopy density and land-
cover data retrieved in Steps 1 and 3 of the 30 m process to 
constrain the placement of individual tree CHMS drawn from 
table lookup data. These CHMS were extracted from the lidar-
based reference 1 m CHMS and assembled into a table indexed 
by maximum height. The CHMS represent 20 deciduous trees 
with heights ranging from 5.4 m to 24.7 m, and 20 evergreen 
needleleaf trees with heights ranging from 4.3 m to 46.2 m. 

Methodology
Thirty Meter Downscaling Process
The process used to downscale from the 1 km Simard et al. 
(2011) dataset to 30 m resolution for a given region of interest 
(ROI) is illustrated in Figure 3, and consists of the following 
steps:

1.	Acquire thematic land cover data for the ROI using the 
NLCD-2006 web mapping service (see USGS EROS Web Map 
Services reference for details).

2.	Reclassify the land-cover data into four simplified classes: 
evergreen needleleaf, deciduous broadleaf (includes woody 
wetlands and developed), mixed forest, and low/partial 
vegetation (shrub, grassland, and emergent herbaceous).

3.	Acquire canopy density data for the ROI using the NLCD-2001 
web mapping service (see USGS EROS Web Map Services 
reference for details).

4.	Scale the canopy density pixel value to a range from zero 
to one.

5.	Create a 30 m resolution output raster with the same bounds 
as the ROI and set its pixel values to zero.

6.	For each 30 m pixel in the new raster:

a.	 If the value in the corresponding canopy density pixel is 
below a threshold, assign a canopy height of zero.

b.	Otherwise, locate the four closest 1 km pixels in the 1 km 
maximum height raster based on the distance of each 1 km 
centroid to the 30 m pixel centroid. Weight each of the four 
height values based on the inverse of its distance, and sum 
them to arrive at an interpolated height value for the 30 m 
pixel.

c.	 Sample a height scaling factor (between zero and one) 
from a height distribution, and multiply this factor by 
the interpolated maximum height value to determine the 
estimated height of the 30 m pixel.

d.	If the land-cover type is low/partial, reduce the estimated 
height by a constant scaling factor.

e.	 Assign the estimated height value to the pixel in the output 
raster.

7.	Output the resulting 30 m CHM.

Figure 3. E lements of the 30 m downscaling process.
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a.	 Set the available area to the area of the current 30 m pixel.
b.	Scale the available area by the canopy density associated 

with the 30 m pixel, which ranges from zero to one.
c.	 While the available area is greater than zero:

i.	 Choose a random location within the 30 m pixel 
boundary in the output raster where no height value has 
yet been assigned. 

ii.	 Calculate a height for the sample tree by selecting a 
random value from a Gaussian distribution (m = 0, 
s = 2 m) and adding it to the height value of the current 
30 m pixel as output by the 30 m process, to simulate 
random variation among individual trees.

iii.	Select the CHM representing either a deciduous or 
coniferous tree from the lookup table with the highest 
maximum height that is less than the calculated height, 
using the simplified land-cover type from Step 2 of the 
30 m process to determine the type of tree.

iv.	For each 1 m pixel in the selected individual tree CHM:

01.	Add the difference between the calculated height 
from step ii and the maximum height of the CHM to 
the pixel value.

02.	Using the selected random location as the center 
point, write the adjusted value to the corresponding 
location in the output raster, if its value is greater 
than the value already written.

03.	If the original value in the destination pixel was 
zero, decrease the available area by the area 
represented by the written pixel.

04.	If the tree pixel falls outside of the bounds of the 
30 m pixel, write the pixel value to the adjacent 
30 m cell similarly.

3.	Output the resulting 1 m CHM.

If a height value is found in the 1 km data that is larger 
than that of the tallest CHM in the lookup data, the difference 
between the estimated height and the tallest model is added 
to the pixels of the tallest model, to extrapolate beyond the 

Evergreen needleleaf trees were selected from the lidar-based 
CHMS from the Flathead Lake, Montana study area, and decid-
uous trees from the Boston, Massachusetts data. Tree type was 
determined visually from coincident aerial photography. Trees 
in open-canopy conditions, where the boundaries of the tree 
are visually identifiable, were manually selected to represent 
a range of heights. The 1 m CHMS were cropped to the appar-
ent boundary of each tree, and each resulting small surface 
was treated as representative of all trees of similar heights, 
for either the deciduous broadleaf or evergreen needleleaf 
categories. Sample individual tree CHMS are shown as part of 
Figure 5, and the processing steps for downscaling a region of 
interest to 1 m resolution are listed below.

1.	Create a 1 m resolution output raster with the same bounds as 
the ROI and set its pixel values to zero.

2.	For each 30 m pixel resulting from the 30 m process described 
above:

Figure 4. D istributions used to downscale height values 
in the Simard et al. (2011) dataset.

Figure 5. E lements of the 1 m downscaling process.
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(a) (b)

(e) (f)

(c) (d)

Figure 6. P rocessing steps shown using the Lake Tahoe, 
California study area: (a) The original 1 km heights from 
Simard, et al. (2011), (b) The 30 m interpolated height 
surface, (c) Results after applying a minimum canopy 
density threshold from NLCD-2001, (d) Results after scal-
ing low/partial land cover types, (e) CHM created by 
sampling 30 m pixel values randomly from the logarith-
mic height distribution, and (f) CHM created by sampling 
30 m pixel values from the logarithmic distribution using 
canopy density.

reference CHMS to the 30 m CHMS output from the downscal-
ing process using the logarithmic distribution. The per-pixel 
agreement is low, with an R2 of 0.20 and RMSE of 9.2 m, based 
on a random selection of 2,680 pixels. The problem is exac-
erbated at 1 m resolution, where the stochastic placement of 
trees ensures little correlation between simulated and refer-
ence CHMS on a per-pixel basis.

To address this limitation, we compared the downscal-
ing results to the reference 1 m and 30 m CHMS using canopy 
volume, calculated as per-pixel height multiplied by area, 
summed for each 1 km sample area, correcting for variations 
in the area represented by each pixel. This approach allows 
the accuracy of the results to be assessed without relying on 

range of the available samples. This is particularly relevant 
in the western United States, where evergreen needleleaf 
tree heights may be above the 46.2 m maximum found in the 
lookup table. 

There are several limitations and assumptions in the 
process that affect the accuracy of the results. First, because 
they are static samples drawn from areas of low canopy 
density, the individual-tree CHMS do not account for the 
effects of canopy density or species on crown shape. Second, 
only deciduous broadleaf and evergreen needleleaf types 
are included, and are assigned according to land-cover type 
without attempting to differentiate between species. Third, 
mixed forest is assumed to be distributed equally between 
the two types, and low vegetation is treated as deciduous 
broadleaf. Fourth, the small number of individual-tree CHMS 
in the lookup table unrealistically limits the variability of 
crown shapes in the simulated CHMS. Finally, the downscal-
ing is limited in its accuracy to that of the Simard et al. (2011) 
data. Within the coterminous United States, the Simard et al. 
(2011) 1 km data has a maximum height of 54 m, which is 
less than the height of the tallest trees. We speculate that this 
may be due to the incomplete coverage of the underlying GLAS 
data, because ICESat tracks may not intersect the tallest forests 
within the coterminous United States.

Calibration
We used the reference data derived from airborne lidar from 
three of the study sites to verify and calibrate the downscal-
ing process: Flathead, Montana, Lake Tahoe, California, and 
Pleasant, Maine. A spatially random sample of 1 km2 areas 
(n = 90) spread across the three sites were identified, and 
the 30 m process was run for each in stages. Figure 6 shows 
the main processing steps. We found that, although there is 
only a weak relationship between canopy density and height 
(R2 = 0.28 in the calibration sites), using canopy density as the 
basis of the sampling improves the apparent accuracy slightly 
over sampling randomly for each pixel. This corresponds to 
Step 6c of the 30 m downscaling process. The effect on the 
output is shown in Figure 6e and 6f. We also found that CHM 
pixels in the low/sparse category had a lower average height 
value than the forested classes, and, when estimating the 
height of a 30 m pixel in the low/sparse category, we scaled 
the calculated height by 0.6 to approximate this relationship. 
A canopy density threshold of 0.1 was selected based on the 
assumption that coverage of less than 10 percent indicates 
only part of a single tree, or parts of a small number of trees, 
are likely to fall within the 30 m pixel. The 1 m process is 
constrained by the results of the 30 m process, and the NLCD 
data as described above. 

Results and Discussion
The prototype application was run at 30 m and 1 m resolution 
for 262 randomly selected 1 km2 areas located across the nine 
study sites. Downscaled CHMS at each resolution and location 
were generated using linear, exponential, logarithmic, and 
empirical height distributions. Figure 7 shows sample 30 m 
resolution outputs, created using the different height distribu-
tions, and representative output of the 1 m process is shown 
in Figure 8. These results suggest that the process does pro-
vide an improved, if approximate, representation of canopy 
vertical and horizontal variability within 1 km pixels.

Evaluating the results more quantitatively presents a chal-
lenge: the underlying relationships between height and NLCD 
data are weak, and the height value ascribed to any single 
pixel is likely to be inaccurate, even if the vertical distribution 
selected for the site is correct. A review of the 30 m downs-
caled CHMS bears this out. We compared the 30 m resolution 
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Table 2.  Overall Accuracy of Downscaling Using Different Height 
Distributions in Randomly-Placed 1 km2 Areas. RMSE is Expressed as m3 
Divided by Mean Reference Canopy Volume in m3. The Two Left Columns 
Show the Statistics Calculated for the Estimated versus Reference 1 m 
CHMs, and the Two Right Columns Show the Results for the Estimated 

versus Reference 30 m CHMs, with n = 262 for both

	 Random 1 km2 locations 
	 1 m resolution	 30 m resolution

	 RMSE	 R2	 RMSE 	 R2

Empirical	 0.66	 0.38	 0.45	 0.61
Exponential	 0.69	 0.33	 0.70	 0.27
Linear	 0.84	 0.37	 0.36	 0.67
Logarithmic	 0.95	 0.46	 0.33	 0.77

	 n = 262; mean 	 n = 262; mean
	      = 5.55 x 106 m3	      = 12.91 x 106 m3

(a)

(b)

(c)

(d)

(e)

Figure 7.  Sample output at 30 m resolu-
tion using the four height distributions for 
the Tenderfoot Creek, Montana study area: 
(a) Reference, (b) Empirical, (c) Exponen-
tial, (d) Linear, and (e) Logarithmic. White  
is 35 m and above; black is zero; height 
scales linearly with intensity; area is  
7.4 km × 11.3 km.

per-pixel agreement. Canopy volume, however, is highly vari-
able between locations, and difficult to compare as a result. 
Therefore, we used the unit-less ratio of RMSE in m3 to mean 
reference volume in m3 to characterize the error. As shown 
in Table 2, the logarithmic distribution results in the most 

(a)

Estimate Reference

(b)

(c)

Figure 8. O ne meter output for representative 1 km2 
pixel areas simulated using a linear height distribu-
tion from (a) Yosemite National Park, California, 
(b) Lake Tahoe Basin, California, and (c) Independ-
ence Lake, California. The left-column images are the 
simulated CHM; the right-column images are the CHM 
derived from airborne lidar. White is 35 m and above; 
black is zero; height scales linearly with intensity.
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(a)

(b)

Figure 9. P er-site scatterplots showing the reference versus estimated volumes of 
262 1 km2 sample area spread across the study sites, expressed as a proportion of 
the reference maximum: (a) shows the output using the logarithmic height distribution 
at 30 m resolution, with a reference maximum of 34.2 × 106 m3, and (b) shows the 
output using the empirical distribution at 1 m resolution, with a reference maximum of 
15.0 × 106 m3.

selected based on the RMSE shown in Table 2. The 30 m 
resolution output is more accurate than the 1 m output, which 
shows a greater divergence between reference and estimated 
volumes among the study sites. 

These results suggest that the choice of height distribu-
tion does affect the results, and identifies the distributions 

accurate downscaling at 30 m, and the empirical distribution 
results in the most accurate downscaling at 1 m resolution. 

Figures 9a and 9b show the reference versus estimated 
canopy volumes for the 1 km2 sites, at 30 m and 1 m resolu-
tion, respectively. The 30 m output uses the logarithmic dis-
tribution, and the 1 m output uses the empirical distribution, 
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computationally feasible, but that further optimization is 
required before it can be used in web-based maps, where 
users expect faster response times. 

Conclusions
In this paper we demonstrated an approach to estimating 
canopy height at 30 m and 1 m resolution using on-demand 
fusion of existing datasets. Our initial accuracy assess-
ment shows an RMSE of 33 percent of the mean reference 
volume and an R2 of 0.77 at 30 m resolution, an RMSE of 
66 percent of the mean reference volume, and an R2 of 
0.38 at 1 m resolution, using the height distributions that 
resulted in the most accurate results, compared to data 
derived from airborne lidar. The process offers a more 
complete, but approximate, characterization of horizontal 
and vertical variability of canopy height within each 1 km2 
area than is available using scalar statistics like percent 
tree cover or maximum height derived from coarse-grained 
height data. Until national high-resolution canopy height 
models are available based on continuous lidar coverage 
with a sufficiently high point density, such an approxima-
tion may be useful for applications that need to bridge the 
gap in scale between coarse-grained height data and tree 
height as observed in the local landscape. 
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that produce more accurate results for the given study areas. 
However, the reliability of these results are limited by the 
small number of available sample sites, as well as the accu-
racy of the underlying height data and the underlying weak 
correlations between height and canopy density. Changes in 
1 m heights were unnaturally demarcated by the 30 m pixel 
boundaries in many cases, suggesting that smoothing when 
generating the 1 m CHM may also improve results. The limited 
number of sample tree models in the table lookup data, and 
their unrepresentative crown shapes, may also contribute to 
the inaccuracy of the 1 m results. 

To assess the effects of temporal differences on the results 
we compared the random sample points to the Landsat NDVI 
change products from 1990 to 2005 and 2000 to 2005 (Green, 
2011), and removed any sample within 1 km of an area with a 
negative or positive NDVI change. Using the logarithmic height 
distribution, the squared correlation among the 126 remain-
ing points at 30 m was similar, with an R2 of 0.77. The RMSE 
reflects a slightly higher accuracy at 28 percent of the refer-
ence average (12.91 × 106 m3) for the 1 km2 areas around the 
selected points.

We also ran the 30 m process using the NLCD-2001 land-
cover dataset. NLCD-2001 land-cover data should be more 
similar to the 2001 canopy density product than NLCD-2006, 
but is likely to differ more from the 2005 GLAS-based data. 
The difference in the normalized canopy volume RMSE was 
negligible (unchanged to two decimal places), although the R2 
increased slightly to 0.79, using the same sample locations as 
the other tests. Figure 10 shows the overall relative volume by 
site, normalized to the maximum, as estimated using land-
cover data from NLCD-2001, from NLCD-2006, and as calculated 
using reference data, indicating that the differences between 
the two are small. 

Computationally, the memory footprint for the proof-
of-concept application within the coterminous US is ~1 GB. 
A 100 km2 area at 30 m requires ~8 seconds of processing 
time, and a 1 km2 area at 1 m requires ~6 seconds, with 
most of the time spent querying the NLCD web services 
in both cases. This indicates that the overall approach is 

Figure 10. E stimated normalized canopy volume per site downscaled using the logarith-
mic distribution, using land-cover data from NLCD-2001 and NLCD-2006, and as calculated 
using the reference 30 m CHMs.
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