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The spatio-temporal relationship between unusual sightings of dead birds and

human West Nile virus infections has been observed in many studies and has

been proposed as an indicator of an intense amplification cycle between birds and

mosquitoes. However, to date, no single study has provided quantitative evidence

that the amplification cycle occurs at the local level and that it operates within

certain temporal parameters. Here, we use a novel geostatistical and spatial

analytic methodology and present the first evidence that the localized unusual

space–time correspondence of dead birds models the amplification cycle and that

this cycle peaks 15–16 days prior to human onset of West Nile virus infections.

During the process of establishing this relationship, we extend the traditional

Knox space–time interaction measure to overcome pair-dependency limitations

and use a novel implementation of the kappa non-chance agreement measure to

identify the temporal characteristics of the association of bird deaths to human

West Nile infections.

Keywords: West Nile virus; Space–time clustering; Knox test; Monte Carlo;

Kappa statistic

1. Introduction

The West Nile virus (WNV) is a mosquito-borne disease-causing infectious agent

that affects wildlife and domestic animals. It can occasionally cause fever and

encephalitis in humans and, in rare cases, can be fatal. First isolated in the West Nile

district of Uganda (Smithburn et al. 1940), it was considered to be enzootic

(perennially circulating among the animal population) to the Middle East, Africa,

and Eurasia (Hayes et al. 2001) until 1999. In 1999, it was identified for the first time

in the Western Hemisphere (Lanciotti et al. 1999, Nash et al. 2001), and since then it

has been causing seasonal epidemics infecting thousands of people and infecting a

wide variety of species in great numbers, mostly birds.
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Since its introduction to the Americas, the disease has received renewed attention

by researchers. The limited knowledge of how the disease circulates in the naı̈ve-

American wildlife prompted research on two major fronts. One was research

focused on laboratory experiments that investigated the biological potential of

mosquitoes and birds to acquire and transmit the virus (i.e. Komar et al. 2003). The

other major front of the research focused on investigating the field dynamics of West

Nile virus transmission and the interaction of mosquitoes, birds, and animals that

could result in West Nile virus amplification and human infections (i.e. Kulasekera

et al. 2001).

Laboratory analysis found that the most competent reservoir hosts are resident

passerine bird species, and mortality is higher in corvids (McLean et al. 2001,

Komar et al. 2003). According to Komar et al. (2003), American crows develop the

highest viremia (amount of virus circulating in their blood) in 4–5 days post-

infection and on average die on day 5. The same study showed that their mortality

rate was found to be 100%, and a study by Yaremych et al. (2004) has verified this

high mortality of crows due to WNV in the wild. Blue jays develop highest viremia

levels on days 1, 2, 3, and 4 post-infection and on average die 4.7 days post-infection

at a 75% rate (Komar et al. 2003)

A significant part of field research relates to the identification of proxies for WNV

presence in specific areas so that public-health officials could intervene with control

measures (Eidson et al. 2001) and reduce the risk of infection in humans. These

spatially oriented risk-determining models initially appeared with the measurement

of spatial densities of dead crows (Eidson et al. 2001) that soon proved limited.

Later, Mostashari et al. (2003) used spatial models that attempted to overcome the

limitation of density measures by using a modified version of the SatScan statistic

(Kulldorff 1997). Theophilides et al. (2003), building on ideas by Rogerson (2001),

developed a localized dynamic implementation of the Knox (1964). Called the

Dynamic Continuous Area Space–Time (DYCAST) system (Theophilides et al.

2003), the model identifies local WNV risk areas and is based on the hypothesis that

West Nile virus propagation occurs in a cycle between birds (hosts) and mosquitoes

(vectors). The cycle eventually amplifies, resulting in an increased pool of the virus

among birds. Mosquitoes that feed on both birds and humans are then more likely

to carry and transmit the virus to humans (Campbell et al. 2002). Theophilides

et al.’s (2003) working hypothesis is that unusually high numbers of crow and blue

jay deaths occurring close in space and time signal the presence of an intense

amplification cycle and increased risk to humans and that the DYCAST

(Theophilides et al. 2003) models this amplification process as a continuum in

space and time. DYCAST’s implementation in New York City in 2001

(Theophilides et al. 2003) demonstrated that West Nile virus risk could be identified

in a timely and specific way, prior to the onset of human infections. Others have

shown that local high dead crow densities precede the occurrence of human WNV

infections (Eidson et al. 2001, Watson et al. 2004). Despite the consensus of

observations that bird deaths precede human infections in specific areas, to date, no

quantitative evidence has ever been presented that links bird deaths to the spatial

and temporal parameters of the amplification process, and the spillover of the virus

from avian to human hosts.

Here, we present a retrospective analysis of data of dead birds and human

infections that provides this quantitative evidence. These data were collected by the

Chicago Department of Health from 30 June to 5 October 2002. The analysis
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employs DYCAST (Theophilides et al. 2003) modified to use an unconditional

Knox methodology that uses a Monte Carlo distribution to test for significance. The

results are analysed for predictability beyond random chance using a weighted

Kappa analysis for a range of temporal windows selected prior to the date of each

human case.

2. Materials and methods

2.1 Data description

The data were provided by the Chicago Department of Health and include the

location and date of dead bird reports (primarily crows and blue jays, n53837), as

called in by the public (followed by office data geocoding at the street level,

verification, and cleaning with occasional field verifications), and the location and

date of the onset of human West Nile virus infection (n5215). The infection of

humans was assumed to occur at the place of residence. The analyses were

performed over a 0.8 km (half-mile) grid (with 1189 cells) overlaid across the City of

Chicago.

2.2 Analysis

2.2.1 DYCAST procedure. The data were imported into the DYCAST

(Theophilides et al. 2003) system and processed for every day between 30 June

2002 and 5 October 2002, (the period of Chicago Health Department, dead-bird

surveillance). DYCAST was selected because of its successful implementation in

New York City and its prospective and dynamic nature. The DYCAST procedure

involves laying a grid across the study area and performing a Knox (1964) test over

a spatial domain of 2.4 km (1.5 miles) around each cell centroid and a temporal

domain of 21 days prior to the current date. The result of this analysis is a surface

showing the probability of non-random space–time interaction of bird deaths. When

the probability is lower than 0.1, an infectious process, West Nile virus, is likely to

be the cause of the bird deaths. This method should not be confused with kernel

density estimation, which measures the number of birds per unit area and not the

space-time interaction of bird deaths in a defined spatial and temporal domain.

While DYCAST is a geographically continuous process, it results in a statistically

discrete risk (p(0.1) no-risk (p.0.1) surface.

DYCAST was run for the Chicago study area using the same Knox test closeness

parameters as set by Theophilides et al. (2003) for New York City. These were a

(0.4 km 0.25 mile) close-space parameter and 3 days close in time, and were selected

from an ecologically constraint range in Theophilides et al. (2003). The significance

of the space–time interaction was evaluated at the p(0.1 level to reduce any false

negatives. New York City is a similar urban environment with the same mosquito

vector, the Culex pipiens.

For testing the significance of space–time interaction and the resulting

probability, Knox (1963) initially proposed a chi-square test for evaluating the

significance of the interaction and then a Poisson test (Knox 1964). Both of these

tests require that the data (pairs) being evaluated be part of an independent process.

Because the pairs are formed by a finite number of points and share points, this

requirement is violated (Knox 1964). Moreover, excess clustering in either the space

or time dimension of the data can exacerbate this violation, by resulting in an

underestimation of the variance.
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Mantel (1967) proposed a solution to the significance test that involved the Monte

Carlo switching of the space–time labels of the data points and then ranking the

actual number of close space–time pairs to the Monte Carlo distribution. Barton

and David (1966) found this to result in an approximate Poisson distribution, but

this only applied to that specific case (Williams 1984). However, with heavy

clustering in either the space or time dimension, the switching of already-close labels

tends to influence the variance of the resulting Monte Carlo distribution. For these

reasons, and in a departure from Theophilides et al. (2003), significance testing was

accomplished by an unconditional Monte Carlo extension of the Knox test method.

For a number of points n found within the spatial domain and temporal domain,

random sets of n points were generated within the same domain. For each set, the

number of close space–time pairs (st), the number of close space pairs (s) and, the

number of close time pairs (t) were counted. Based on the distribution of these

random runs, the probability level was assessed as:

p~P st§STð Þ\ s§Sð Þ\ t§Tð Þf g

where S, T, and ST are the actual number of points found close in space, time, and

both, respectively. This unconditional formulation can be contrasted with that of

the traditional Knox test, where:

p~P st§STð Þj s§Sð Þ\ t§Tð Þ½ �f g

For the Monte Carlo simulation, 5000 random distributions were generated for each

possible count of birds found within the spatial and temporal domain of a cell

centroid. These were defined as the area covered by a 2.4 km (1.5 mile) radius circle

and the 21 preceding days, respectively. The actual count of dead birds found within

the domain of each cell centroid was used to select the appropriate distribution, and

the actual number of close space–time dead bird pairs (as defined by an individual

close in space (0.4 km (0.3 miles) and close in time, 3 days of pairs), was then

ranked with respect to that for a random distribution. This resulted in the

assignment of each of the 1189 cells with a daily probability of random space–time

interaction of dead bird pairs. A cell was identified as ‘at-risk’ for human West Nile

virus infection when its probability was less than or equal to 0.1.

2.2.2 Result evaluation. Evaluation of the results was conducted in two ways.

First, we calculated the percentage of human WNV infections that occurred in cells

that were shown ‘at-risk’ in the days prior to the onset of the human illness. Second,

we sought to evaluate and test the significance of the overlap of at-risk cells with

human cases that occurred beyond chance. In these evaluations, we used the results

from modified DYCAST and the location and date of the onset of human cases.

2.2.3 Percent of success. In order to calculate the percentage of success, the

location of each human case was overlaid on the grid. Each cell containing a human

case was queried to determine if it was at risk. This query was performed for each

day starting with 21 days prior and leading up to the date of onset of illness. If the

query returned true, risk identification was considered to be successful for that day

for that cell. Two histograms were constructed, one showing when, prior to human

infection, risk was identified, the other showing the persistence of that risk prior to

human infection.

Figure 1 shows a histogram of the number of days, prior to the onset of human

illness, on which risk was identified in those areas. The x-axis shows the days prior
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to onset, and the y-axis the cumulative percentage of human cases appearing in cells

shown at risk.

Figure 2 shows a cumulative histogram of the number of days on which risk
identification was sustained prior to human illness. The x-axis shows the number of

days on which risk was persistent, and the y-axis the cumulative percentage of

human cases.

2.2.4 Kappa. The results of percentage success indicate the potential association of

dead birds and human risk. However, this association cannot be statistically tested

and does not account for successful identification occurring by chance (henceforth
called chance agreement). Stated differently, the high sensitivity of the results may

have a reciprocal low geographic specificity. In such a case, many more risk cells

Figure 1. Cumulative histogram of number of days prior to onset of human illness, risk was
identified in those areas. x-axis: days prior to onset; y-axis: cumulative percentage of human
cases appearing in cells shown at risk (21 indicates that risk was not identified by the
modified DYCAST).

Figure 2. Cumulative histogram of number of days risk identification was sustained prior to
human illness. x-axis: days risk was persistent; y-axis: cumulative percentage of human cases.
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would have been identified, increasing the potential that the high sensitivity is the

result of the high probability of chance intersection of the human cases with the

numerous risk cells, not the efficacy of the model. To control for this and to

statistically test the association, we decided to use the kappa index of agreement (or

kappa statistic; Cohen 1960). The kappa statistic is used to quantify and test the

non-chance agreement between a set of data independently assigned by two raters or

methods into nominal classes. In this case, the ‘methods’ consist of the modified
DYCAST procedure and the actual human infections. Each method can classify

each grid cell as being at WNV risk (or actual WNV sickness) or at no risk (no

WNV sickness) independently from the other. A chi-square statistical test for the

significance of the agreement can be performed.

2.2.5 Calculation and scaling of kappa values. The spatial version of the kappa

statistic was introduced by Congalton and Mead (1983) and Congalton (1991), and

is widely used in Remote Sensing; however, it was never implemented for a space–
time database. Here, we present for the first time a methodology for implementation

of kappa over space and time. In this methodology, kappa values are calculated for

unique combinations of differently sized temporal windows of consecutive days, and

lags of given number of days prior to the onset of each human infection. The

temporal windows ranged from 1 to 21 days, and the lags ranged from 0 to 17 days

prior to onset. An example of a combination of 12 days previously with a 2 day

window is shown in figure 3.

The general form of the kappa statistic is defined as:

k̂~

N
Pr

i~1

xii{
Pr

i~1

xiz � xzið Þ

N2{
Pr

i~1

xiz � xzið Þ
,

where N is the total number of areas considered, and xii, xi + , x + i are the elements of
the matrix shown in table 1, the sum of which amounts to N.

In the spatial and temporal implementation of kappa, a kappa value is calculated

for all unique combinations of a range of days prior to onset of illness in humans

and a range of temporal windows in order to find the date and duration of
maximum non-chance agreement between DYCAST results and human illnesses.

The total number of cells for any unique combination of days prior to onset and a

Figure 3. Illustration of temporal windows and days prior to onset and model prediction:
most likely time maximum viremia exist in environment.
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window is expressed as:

N~
X5 October 2002

d~30 June 2002

G � I

where G is equal to 1181, the number cells of the Chicago grid, and I is an indicator

function, which can be evaluated as follows:

(1) I51 if, for dates (d + p days) to (d + p days) + (w21 days), there is at least one

human case, where d is the date, p is the number of days prior to onset, and w

is the window size.

(2) I50 otherwise.

The calculation of the kappa values and their respective chi-square test was done

over a combination of p50–21 and w51–19.

The parameters for calculating the kappa statistic consist of total possible

agreement, expected chance agreement, and observed agreement. The total possible

agreement is calculated as the product of the number of human illnesses multiplied

by the size of the temporal window. Expected chance agreement is the ratio of at-

risk cells to total cells (over the windows) multiplied by total possible agreement.

Observed agreement is the sum over all human cases of the number of at risk cells

contained within the temporal window overlapping the location of a human case.

The agreement for no-risk/no-human-illness cells was calculated in a similar fashion.

We calculated kappa values for both classes of agreement and combined them

together based on the ratio of total possible agreement in the absence of WNV cells

divided by the total possible agreement in presence of WNV cells (the former was far

higher than the latter). Whenever the two rating categories are not equally likely,

some decision must be made, explicitly or implicitly, as to how to weight agreement

in each. The weighting scheme chosen addresses two goals. First, it is based on a

first-order approximation to the variance of kappa for each class; that is, it produces

the estimate of kappa with the least variance. See Fleiss et al. (1969). Second, this

combination is also equivalent to the assumption that the cost of a misclassification

is directly related to the rarity of an event; Bloch and Kraemer (1988). The results

are shown in figures 4 and 5. The significance of the resulting weighted kappa values

was tested using a chi-square statistic (CI: 95%).

3. Results

The results show that 14 days or more prior to the onset of illness, risk was identified

in 79.14% of 0.162 km2 (40 acres) cells in which human cases appeared (figure 1). In

84.19% of cells containing human infections, the risk was consistently shown to

appear for at least 10 days (figure 2). This means that risk was identified prior to the

onset of human cases and existed for many days. In fact, for 76.18% of the cells in

which human cases occurred, risk was shown at least 15 days before onset, possibly

Table 1. xii, xi + , and x + i elements of the matrix.

Rater 1

Rater 2 Class 1 Class 2
Class 1 x11 x12

Class 2 x21 x22
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before the humans were bitten by mosquitoes, assuming that the range of incubation

is 3–15 days (Olejnik 1952).

Figure 4 shows a surface created from kappa values, which indicate non-chance

agreement between human cases and close space–time bird deaths, for a range of

different combinations of number of days prior to the onset of human illness

(henceforth called days prior) and window sizes (figure 3). All kappa values of more

than 0.025 were statistically significant (probably due to a large number of samples)

and clearly showing that there is a statistically significant spatio-temporal

relationship between non-random space–time interaction of bird deaths and human

illnesses for a range of combinations of days prior to the onset of illness and window

sizes. The strength of this relationship varies with days prior to onset and window

size.

The variation in the strength of this relationship is more clearly seen if one

considers the combinations of window size and days prior that have a non-chance

agreement of over 50% (kappa >0.5, figure 5). These combinations are bound by an

upper and lower limit of days prior to onset and are characterized by an increase in

the kappa value to a maximum followed by drop-off as the day of onset of human

Figure 4. Surface of kappa values for varying combinations of days prior to illness and
window size. x-axis: days prior to onset; y-axis: windows; z-axis: kappa values.
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illness approaches (figures 4 and 5). The highest kappa values in descending order

occur for windows of 2, 3, 1, and 4 days, and are consistent with the fact that

viremia—sufficient to infect mosquitoes—in crows and blue jays lasts for 1–4 days

(Komar et al. 2003). The maximum kappa value of 0.59 occurs at 12 days prior with

a 2 day window (figures 3 and 4). Adjusting for a 1 day reporting lag (by the public),

the maximum non-chance agreement occurs during days 13 and 14 prior to the onset

of illness. Based on this and the fact that peak viremia occurs 1–2 days prior to bird

deaths (Komar et al. 2003), we can deduce that the maximum pool of virus in the

avian hosts that die occurs approximately 15–16 days prior to the onset of human

illness. Assuming that mosquitoes constantly feed on all available birds, this peak

die-off also represents the peak of the amplification cycle and the time the maximum

pool of the virus circulates in the entire avian population. Hence, it is the most likely

time that mosquitoes that bridge the virus to humans became infected. This is

consistent with the mean of the extrinsic incubation period in mosquitoes of 4–12

days (Dohm et al. 2002) and the intrinsic incubation period in humans. Human

intrinsic incubation periods are reported to range from 2–6 days (Goldblum et al.

1954) to 3–15 days (Olejnik 1952), though the exact range is still unknown (Petersen

and Marfin 2002). The temporal relationship between the model results (figure 3)

and the epidemiological progression of infection (figure 5) is shown by comparing

figure 3 with figure 6.

Figure 5. Kappa agreement results for varying window size and days prior. Kappa values of
higher than 0.5 are shown in grey squares. The peak value is shown in black.

West Nile virus amplification and relationship to human infections 111



The period of likely human infection is preceded by an increase in the kappa value

to a maximum and coincides with a downward trend of the kappa values that leads

to a drop of more than 30% by day 4 prior (figures 4 and 5, 2 day window). This is a

statistical manifestation of the temporal characteristics of the amplification cycle.

The downward trend in kappa is a result of fewer birds dying close in space and time

as we approach the onset of human illness. We believe that the decreased dead bird

activity is due to a localized reduction in the bird population. Because of this

reduction, mosquitoes (that have increased significantly in numbers by now due to

peak availability in blood meals) that feed on both birds and mammals (Fonseca

et al. 2004) are more likely to turn to dead-end hosts like humans and other

mammals for blood meals (the so-called ‘spillover’ effect). These results suggest that

by the time a human develops symptoms of WNV disease, the amplification cycle

has been disrupted in that local area due to a die-off of a substantial number of

competent hosts.

4. Conclusions

Through the use of both geostatistical and spatially analytic techniques, we have

provided evidence that corvid deaths are an integral part of the local West Nile virus

amplification cycle and that this cycle peaks 15–16 days prior to the onset of human

illness, a period that is consistent with the epidemiology of the virus transmission

from bird to mosquito to human in the same approximate time frame. This peak is

followed by a substantial reduction in the amplification activity, as shown by the

dramatic reduction in the kappa values as the day of human infection draws near.

The implication for remediation is that by the time a human has become sick in an

area, the risk decreases as the amplification process is subsiding, and spraying of

adulticide may have little or no effect.

Furthermore, we have demonstrated that the unconditional extension of the

Knox test is a more appropriate space–time measure when interdependence of

points of the Knox data pairs is of concern. The approximate parametric and

conditional Monte Carlo significance tests that suffer from over- or underestimation

of the variance due to spatial autocorrelation and lack of pair independence were

replaced by an unconditional Monte Carlo test. This test uses random independently

distributed uniform sets of points in the space–time domain that reflect the actual

distribution of the close space–time pairs and their marginal individual space and

time distributions. This allows the probability of the margins to be fixed and

included in the test rather than allowing them to bias the results. On a more practical

matter, the unconditional extension of the Knox will capture instances where all

pairs are close in space and time as an epidemic outbreak, whereas the original Knox

(1963, 1964) test may not.

Figure 6. Time: mosquito infection to onset date of human infection.
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In addition, the unique implementation of the space–time kappa measure is

effective in evaluating agreement in spatially explicit dynamic phenomena. While in

Remote Sensing the kappa coefficient (Congalton 1991) is routinely used in its

spatial form, this is the first time it was applied in a space–time domain for

identifying a biological relationship. The use of varying size temporal windows and

days prior helped isolate the period of maximum amplification activity, and the

gradual increase and decrease in the resulting surface of kappa values verify that this

is the result of a physical/biological process.

What is not known is whether this decrease in activity is because of significant

bird die-offs, bird migration, or a combination of both. However, there is now

evidence that crows are dying of the West Nile virus in significant numbers

(Yaremych et al. 2004), at least in Illinois. In the City of Chicago, corvids

populations were reduced by 82% as a result of the 2002 epidemic (Watson et al.

2004), while West Nile virus infections in humans in 2003 were less than 5% of the

2002 human infections. In addition, the amplification process and human infections

are highly dependent on the predilection of the species of mosquitoes to feed on

birds or humans, and their feeding behaviour needs to be studied further at the local

level; however, there is evidence that Culex pipiens is capable of feeding on both

humans and birds (Fonseca et al. 2004).

We caution that the findings of this study should not be interpreted as the only

process operating behind West Nile virus human infections globally. West Nile virus

is a newly introduced agent in the United States, and this could be viewed as

evidence of a process operating on a naı̈ve amplification host population.

Acknowledgements

The authors would like to thank the Centers for Disease Control making this

research possible. We would also like to acknowledge Dr Dickson Despommier

(School of Public Health, Columbia University), for his assistance on West Nile

virus transmission dynamics, and thank Dr Nicholas Komar (CDC) and John-Paul

Mutebi (Chicago Department of Health), for reviewing and providing thoughtful

critiques to this manuscript.

References
BARTON, D.W. and DAVID, F.N., 1966, The random intersection of two graphs. In: Research

papers in Statistics, F.N. David (Ed.) (New York: Wiley).

BLOCH, D.A. and KRAEMER, H.C., 1988, Kappa coefficients in epidemiology: an appraisal of

a reappaisal. Journal of Clinical Epidemiology, 41, pp. 959–968.

CAMPBELL, G.L., MARFIN, A.A., LANCIOTTI, R.S. and GUBLER, D.J., 2002, West Nile virus.

Lancet Infectious Diseases, 2, pp. 519–529.

COHEN, J., 1960, A coefficient of agreement for nominal scales. Educational and Psychological

Measurement, 20, pp. 37–46.

CONGALTON, R.G., 1991, A review of assessing the accuracy of classifications of remotely

sensed data. Remote Sensing and the Environment, 37, pp. 35–46.

CONGALTON, R.G. and MEAD, R.A., 1983, A quantitative method to test for consistency and

correctness in photointerpretation. Photogrammetric Engineering and Remote Sensing,

49(1), pp. 69–74.

DOHM, D.J., O’GUINN, M.L. and TURELL, M.J., 2002, Effect of environmental temperature

on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus.

Journal of Medical Entomology, 39, pp. 221–225.

West Nile virus amplification and relationship to human infections 113



EIDSON, M., KRAMER, L., STONE, W., HAGIWARA, Y. and SCHMIT, K., The New York State

West Nile Virus Avian Surveillance Team 2001, Dead bird surveillance as an

early warning system for West Nile virus. Emerging Infectious Diseases, 7, pp.

631–635.

FLEISS, J.L., COHEN, J. and EVERITT, B.S., 1969, Large sample standard errors of kappa and

weighted kappa. Psychological Bulletin, 72, pp. 323–327.

FONSECA, D.M., KEYGHOBADI, N., MALCOM, C.M., SCHAFFNER, F., MOTOYOSHI, M.,

FLEISCHER, R.C. and WILKERSON, R.C., 2004, Emerging vectors in the Culex pipiens

Complex. Science, 303, pp. 1535–1538.

GOLDBLUM, N., STERK, V.V. and PADERSKI, B., 1954, West Nile fever: The clinical features of

the disease and the isolation of West Nile virus from the blood of nine human cases.

American Journal of Hygiene, 59, pp. 89–103.

HAYES, C.G., 2001, West Nile Virus: Uganda, 1937, to New York City, 1999. Annals of the

New York Academy of Sciences, 951, pp. 25–37.

KNOX, G.E., 1963, Detection of low intensity epidemicity. Application to cleft lip and palate.

British Journal of Preventative Social Medicine, 17, pp. 121–7.

KNOX, G.E., 1964, The detection of space–time interactions. Journal of the Royal Statistical

Society (C), 13, pp. 25–29.

KOMAR, N., LANGEVIN, S., HINTEN, S., NEMETH, N., EDWARDS, E., HETTLER, D., DAVIS, B.,

BOWEN, R. and BUNNING, M., 2003, Experimental infection of North American birds

with the New York 1999 strain of West Nile virus. Emerging Infectious Diseases, 9, pp.

311–322.

KULASEKERA, V., KRAMER, L., NASCI, R.S., MOSTASHARI, F., CHERRY, B., TROCK, S.C.,

GLASER, S. and MILLER, J.R., 2001, West Nile Virus infection in mosquitoes, birds,

horses, and humans, Staten Island, New York, 2000. Emerging Infectious Diseases, 7,

pp. 722–725.

KULLDORFF, M., 1997, A spatial scan statistic. Communications in Statistics: Theory and

Methods, 26, pp. 1481–1496.

LANCIOTTI, R.S., ROEHRIG, J.T., DEUBEL, V., SMITH, J., PARKER, M., STEELE, K., CRISE, B.,

VOLPE, K.E., CRABTREE, M.B., SCHERRET, J.H., HALL, R.A., MACKENZIE, J.S.,

CROPP, C.B., PANIGRAHY, B., OSTLUND, E., SCHMITT, B., MALKINSON, M., BANET, C.,

WEISSMAN, J., KOMAR, N., SAVAGE, H.M., STONE, W., MCNAMARA, T. and

GUBLER, D.J., 1999, Origin of the West Nile virus responsible for an outbreak of

encephalitis in the northeastern U.S. Science, 286, pp. 2333–2337.

MANTEL, N., 1967, The detection clustering and a generalized regression approach. Cancer

Research, 27, pp. 209–220.

MCLEAN, R.G., UBICO, S.R., DOCHERTY, D.E., HANSEN, W.R., SILEO, L. and

MCNAMARA, T., 2001, West Nile virus transmission and ecology in birds. Annals of

the New York Academy of Science, 951, pp. 54–57.

MOSTASHARI, F., KULLDORFF, M., HARTMAN, J.J., MILLER, J.R. and KULASEKERA, V., 2003,

Dead bird clustering: A potential early warning system for West Nile virus activity.

Emerging Infectious Diseases, 9, pp. 641–646.

NASH, D., MOSTASHARI, F., FINE, A., MILLER, J., O’LEARY, D., MURRAY, K., HUANG, A.,

ROSENBERG, A., GREENBERG, A., SHERMAN, M., WONG, S. and LAYTON, M. and the

West Nile Outbreak Response Working Group, 2001, The outbreak of West Nile

virus infection in the New York City area in 1999. New England Journal of Medicine,

344, pp. 1807–1814.

OLEJNIK, E., 1952, Infectious adenitis transmitted by Cx. molestus. Bulletin of the Research

Council of Israel, 2, pp. 210–211.

PETERSEN, L. and MARFIN, A., 2002, West Nile virus: a primer for the clinician. Annals of

Internal Medicine, 137, pp. 173–179.

ROGERSON, P.A., 2001, Monitoring point patterns for the development of space–time clusters.

Journal of the Royal Statistical Society (A), 164, pp. 87–96.

114 C. N. Theophilides et al.



SMITHBURN, K.C., HUGHES, T.P., BURKE, A.W. and PAUL, J.H., 1940, A neurotropic virus

isolated from the blood of a native of Uganda. American Journal of Tropical Medicine

and Hygiene, 20, pp. 471–492.

THEOPHILIDES, C.N., AHEARN, S.C., GRADY, S. and MERLINO, M., 2003, Identifying West

Nile Virus risk areas: The dynamic continuous-area space–time system. American

Journal of Epidemiology, 157, pp. 843–854.

WATSON, J.T., JONES, R.C., GIBBS, K. and PAUL, W., 2004, Dead crow reports and human

West Nile virus cases, Chicago, 2002. Emerging Infectious Diseases, 10, pp. 938–940.

WILLIAMS, G.W., 1984, Time–space clustering of disease. In Statistical Methods for Cancer

Studies, R.G. Cornell (Eds.), pp. 167–227 (New York: Marcel Dekker).

YAREMYCH, S.A., WARNER, R.E., MANKIN, P.C., BRAWN, J.D., RAIM, A. and NOVAK, R.,

2004, West Nile virus and high death rate in American Crows. Emerging Infectious

Diseases, 10, pp. 709–711.

West Nile virus amplification and relationship to human infections 115




