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Modelling forest canopy trends with on-demand spatial simulation
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Understanding trends in forest canopy cover at local, national, and global scales is
important for many applications, including policymaking related to forest carbon
sequestration. Globally consistent land-cover data sets derived from MODerate-
resolution Imaging Spectroradiometer (MODIS) are now available for a period of
more than 10 years, long enough to detect trends both in deforestation and in
afforestation. However, methods of modelling land-cover change normally require
specialized software and expertise, limiting the availability of this information. This
barrier to access can be eliminated through the use of web services that construct
models on demand based on user-specified regions of interest, so that parameters are
inferred from, and relevant to, local conditions. In this paper we present a proof-of-
concept system for building and running spatial Markov chain models of forest-cover
change on demand, and demonstrate how the on-demand approach may be implemen-
ted for similar applications.

Keywords: web services; spatial Markov; land cover; MODIS

Introduction

The contribution of land-cover change to current anthropogenic climate forcing has been
estimated at 17% (EPA 2013), and afforestation and deforestation are key components
of this change. The satellite-based record of land-cover products derived from the
MODerate-resolution Imaging Spectroradiometer (MODIS) is now available for a
period of over a decade, long enough to begin to capture and model changes in forest
cover. Rates of land-cover change, however, are highly influenced by policy decisions
implemented within areas that may or may not correspond to well-defined adminis-
trative or grid-cell boundaries. Currently, models of land-cover change are usually
constructed for specific regions of interest, requiring model developers to download
and process data for each particular location, even for relatively simple modelling
methods. Constructing models on demand presents a more streamlined alternative:
land-cover trends can be derived for any given area on the fly, using data that has
been processed for this purpose. Only a region of interest, selected interactively, is
required. This makes it possible to quickly examine land-cover trends for arbitrary
regions of interest. The purpose of this paper is to demonstrate the feasibility of one
such approach by describing a proof-of-concept implementation, which is available at
http://www.carsilab.org/forest.
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Modelling land-cover change

Changes in land cover over time have long been modelled using Markov chains (e.g.
Balzter et al. 1998, and Balzter 2000, or see reviews by Baker 1989, and Perry and
Enright 2006), wherein a matrix of transition probabilities between different discrete states
at discrete time intervals is derived from observations, then used to predict the distribution
of those states in the future. Forest succession models, in which successional stages are
represented by discrete states with probabilities of transitions between them, have a long
history (e.g. Horn et al. 1975 and Leps 1987), and spatial Markov models have been used
to model succession (e.g. Van Tongeren and Prentice 1986, Liu et al. 2008) as well as
deforestation (e.g. Soares-Filho et al. 2002, and Moreno et al. 2007).

Land-cover data sets derived from remote sensing (see Giri 2012, for a review of the
state of the art) have been used to create landscape change models (e.g. Eastman 2012).
With MODIS data acquisition in its second decade, MODIS products now make it
possible to capture and model deforestation and afforestation (e.g. Aide et al. 2013).
Compared to in situ measurements, MODIS-based estimates of forest-cover change have
been shown to be less accurate than those based on Landsat or higher-resolution imagery
(Morton et al. 2005), partly due to errors of omission at the sub-pixel scale. Nevertheless,
the high spectral and temporal resolution of the MODIS sensor makes possible cloud-free
and consistent global products that are particularly useful for multi-temporal applications.

Land-cover change analysis is usually performed offline as a one-time or periodic
task. What is novel in the method presented here is that the analysis happens at the time
the request is made, allowing landscape trends to be estimated and visualized quickly for
any given location, without the need for custom analyses or large data downloads.
Additionally, the on-demand approach makes it possible for the model to be invoked
for any polygonal region of interest such as an ecoregion, sub-national boundary, or
national park. This ensures that the results are representative of conditions within that
specific region of interest due to the localization of spatial Markov parameterization.

Spatio-temporal Markov chains

The Markov condition assumes that, given a system with a chain of n states, the state of
the system n + 1 can be modelled as a function of the system in state n alone, without
direct influence from n – 1 other states. In the context of modelling land cover over time,
the chain is a series of discrete time steps, and the state is a set of mutually exclusive land-
cover classes. Given the state of the landscape at time t0 and at time t1, a matrix of
transition probabilities from each cover type xi to each other cover type xj is described in
Equation (1) (adapted from Balzter 2000).

P ¼
Pðx01 jx00Þ Pðx01 jx00Þ . . . Pðx01 jxk0Þ
Pðx01 jx00Þ Pðx11 jx10Þ . . . Pðx11 jxk0Þ

. . . . . . . . . . . .
Pðxk1 jx00Þ Pðxk1 jx10Þ Pðxk1 jxk0Þ

(1)

This allows us to express the probability of land-cover types at time t + 1 using
Equation (2).

p t þ 1ð Þ ¼ p tð Þ � P (2)

2 G.M. Green and S.C. Ahearn
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The matrix P can be derived from discrete data by calculating the frequency of
transitions in two source data sets at t0 and t1. Given a large enough number of time
steps, a homogenous Markov chain, wherein P remains constant, converges to a steady
state. In the case of land-cover modelling, this convergence may not represent a likely
future state of the landscape, as exogenous factors not captured in the transitions from t0
to t1 are likely to occur over time, changing P.

While this conceptual model can capture non-spatial probabilities, land-cover change
is a spatial process, and the probability of change in a given location is affected by its
proximity to other landscape elements and processes. The Markov chain approach can be
expanded to handle spatial conditions by adding another dimension to the vector of
random variables. Equation (3) shows how each element in the matrix P is augmented
by a second vector of possible spatial contexts s, so that the land-cover state at time t + 1
is dependent on the probability of both the land-cover state and the spatial context at time
t, where the range of i and j is the number of land-cover types, and the range of k is the
number of spatial context types.

P ¼ P x0tþ1 jx0t ; s0t
� �

; . . . ;P xitþ1 jxjt ; skt
� �� �

(3)

Cellular automata models of landscape change, descended from the original Game
of Life (Conway 1976), expand spatial realism similarly, by including ancillary data
such as slope and elevation within the representation of the spatial context of each cell.
This kind of spatially enhanced Markov model has been used to model fire spread (e.g.
Clarke et al. 1994), urbanization (e.g. Clarke and Leonard 1998, Batty et al. 1999,
Goodchild and Haining 2004, Almeida et al. 2005), and other highly spatial
phenomena.

Markov chain models on demand

The transition probabilities between different landscape states at different discrete times
can be inferred from observed data by counting the occurrence of each possible transition
type between two observations. In the case of spatial Markov models based on MODIS
tree-cover data, the state of the landscape at t0 and t1 can be represented by two gridded
data sets. To extract transition probabilities between forested states, these data sets need to
represent canopy cover as discrete values, such that transitions between states can be
counted. By preprocessing global MODIS product data to meet the requirements of the
spatial Markov approach, and making them available via web mapping services, the state
of the grid cells falling within any given area at t0 and t1 is readily accessible. By
extracting the transition probabilities for arbitrary regions of interest (i.e. ‘a given
area’), the on-demand system ensures that those probabilities are relevant to local
conditions.

One problem faced by applications that process raster data is that the data size and
computational burden can increase dramatically as the covered area increases. This is a
particular issue for interactive applications, which need to return results quickly. Web-
based mapping services reduce data transfer time by limiting the resolution of images used
to represent larger areas, thereby increasing the area represented by each pixel. We
maintain reasonable performance in the on-demand system using the rescaled output of
the web map services as input to the model, such that the maximum amount of data
processed in any request remains constant.

International Journal of Geographical Information Science 3
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Source data

The infrastructure supporting the on-demand spatial Markov models includes several
gridded data sets that were preprocessed and published as web mapping services. We
chose the per cent tree layer within the MODIS version 5.1 Vegetation Continuous Fields
product (Townshend et al. 2011a) as the basis for this application because it is sensitive to
sub-pixel variability (it expresses tree cover as a continuous percentage rather than
discrete binary value); it has been used to characterize deforestation (e.g. Chagnon and
Bras 2005); it is now available for more than 10 years; and it characterizes per cent tree
cover independent of categorical land-cover type, which can help account for tree cover-
age, for example, in areas that might be classified as urban or agricultural.

Methodology

Data preparation

We downloaded the MOD44B 5.1 data set from 2000 to 2013 from the NASA Land
Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources
Observation and Science (EROS) Center in Sioux Falls, South Dakota, and extracted
the per cent tree, quality, and cloud layers. We then re-projected and resampled the data to
1 km resolution using nearest-neighbour resampling to retain the categorical water and fill
pixel values, and combined the resulting rasters into global annual mosaics. To counteract
the effect of noise, low-quality pixels, and transient pixel values, we combined three-year
mosaics into three global rasters: 2000–2002, 2005–2007, and 2010–2012. The three
three-year averages are referred to as 2001, 2006, and 2011, respectively, in the discussion
below.

Each pixel was assigned the average of the three annual values. Pixels with fill, no
data, or water values in one or two of each three-year periods were assigned to the
average of the remaining valid pixels. Pixels without values between 0 and 100 in all
three years were set to a value of 255. The proof-of-concept system was implemented
using ArcGIS Server 10.1, and raster data was accessed by the simulation software
using the exportMap web service. Pixel values were 8-bit unsigned integers output
without contrast stretching so that the original pixel value ranges were retained.
Bilinear interpolation of map layers was enabled to limit distortion due to on-the-fly
resampling at different zoom levels. The user interface was developed using the
ArcGIS JavaScript API, which invokes web services developed in C#, which in turn
query the multi-year MOD44B web map services.

Web service algorithm

The processing steps implemented in the proof-of-concept web service application are the
following:

(1) Calculate the bounding box of the geometry found in the incoming HTTP GET
request.

(2) Issue a map service call to download rasters representing t0 and t1, limited by the
dimensions of the bounding box and the maximum number of pixels that can be
processed in a single request.

(3) If the requested geometry is a polygon, set the values in the t0 to t1 rasters outside
of this polygon to a mask value.

4 G.M. Green and S.C. Ahearn
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(4) Apply binning to the remaining pixels so that each pixel contains a discrete tree-
cover class label.

(5) Extract the transition probabilities from the t0 to t1 rasters for each spatial context
type, by counting the number of cases of each possible transition between classes.

(6) For each iteration:
(a) Simulate the state of each pixel at t2 by stochastically sampling from the

possible new values using the extracted probability distribution associated
with each pixel in t1, based on its tree-cover class and spatial context.

(b) For validation, compare this with the actual t2 state if it is available, using the
kappa index of agreement, described below.

(c) Copy the state at t2 to t1.
(d) Recalculate the spatial context for each pixel in t1.
(e) Repeat for a fixed number of iterations, or until the distribution of states

stabilizes.

Spatial Markov implementation

The spatial component of the model is defined within each transition type, as an additional
dimension in the transition matrix. We defined the spatial context as the weighted
proportion of cells adjacent to the current cell with a different tree-cover class than the
current cell, using an eight-cell neighbourhood, with corner cells given a lower weight
(0.5 for each corner cell vs. 1.0 for rook-adjacent cells). The proportion values, ranging
from zero to one, are divided into four equal-sized bins, each indicating a level of
divergence between the current cell and its neighbours. To reduce noise, cases where no
cells differ from the current cell are left unchanged. In step 4, the MOD44B per cent tree
value, which ranges from 0 to approximately 80, is binned into four classes: no data,
0–9%, 10–49%, and 50% and above. These classes are labelled as Class A, Class B, Class
C, and Class D, respectively, in the discussion below. No data values, which include fill,
water, and no data as described above, are assigned to Class A.

Each transition probability shown in Table 1 is extracted directly from the data by
counting the number of cells with each state t0 in the columns, and the t1 state in the rows.
By normalizing the number to the column total, the cell values represent the conditional
probability that a cell with the value given in a column at time t will take on the value in
the corresponding row in time t + 1. For example, column A0 represents the probability
that a cell given value A at time t will take on the values A, B, C, or D in time t + 1.

To estimate the spatial component of the transition, we expand the transition matrix by
including the distribution among possible spatial contexts within each possible transition

Table 1. Transition probabilities where A, B, C, and D are the four tree-cover
classes, and the subscripts indicate the time step.

A0 B0 C0 D0

A1 P(A1| A0) P(A1| B0) P(A1| C0) P(A1| D0)
B1 P(B1| A0) P(B1| B0) P(B1| C0) P(B1| D0)
C1 P(C1| A0) P(C1| B0) P(C1| C0) P(C1| D0)
D1 P(D1| A0) P(D1| B0) P(D1| C0) P(D1| D0)

International Journal of Geographical Information Science 5
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between states, as shown in Table 2. As in the non-spatial transition matrix, each spatial
context column is normalized to sum to one, so each cell value represents the transition
probability conditioned on both land-cover class and spatial context.

As in the non-spatial transition matrix, the probabilities are derived directly from the
data within the region of interest. Each cell has one of four tree-cover types, and one of
four spatial context types, resulting in 16 possible states in each time step. For each state,
transition probabilities are estimated for each of the four possible land-cover types in the
next time step.

To give a specific example, Figure 1 shows a sample area in central Brazil (64°W
10°S to 62°W 8°S), with simplified tree-cover classes, in the years 2001 and 2011,
containing 57,600 cells. Figure 2 shows the transition matrix derived from the area
shown in Figure 1, representing the conditional probability of each transition given
each spatial context and cover type.

To accommodate different resolutions, the system operates on the values as returned
by the underlying web map service. It extracts the bounding rectangle from the submitted
region of interest, and sets the maximum number of pixels in either dimension for the
bounding rectangle. If this maximum is less than the number of pixels that would be
returned at full resolution, the other dimension is reduced proportionally, so the original
aspect ratio is retained. The resulting raster dimensions are then included in the request to
the map server, and the pixel values for each time span are acquired. Results are expressed
as a proportion of the total selected area.

Accuracy assessment

To evaluate the results, we set t0 to 2001 and t1 to 2006, extracted the transition
probabilities, then generated an output raster for 2011 and compared it to the actual
2011 data. Following the methods described in Congalton and Green (2009), we evaluated
the results using categorical error matrices, from which were derived overall accuracy,
per-class user’s and producer’s accuracy, and kappa indexes. The kappa index of agree-
ment takes into account the probability of agreement by chance, and was calculated as
follows (adapted from Congalton and Green 2009):

K̂ ¼ n
Pk

i¼1 nii � n
Pk

i¼1 niþnþi

n2 �Pk
i¼1 niþnþi

(5)

Table 2. Spatial context probabilities for a single tree-cover class, A0, where A1,
B1, C1, and D1 are the four land-cover classes at time t + 1, and S0–3 are the four
spatial context types.

Tree-cover class A0

S0 S1 S2 S3

A1 P(A1 | A0,S0) P(A1 | A0,S1) P(A1 | A0,S2) P(A1 | A0,S3)
B1 P(B1 | A0,S0) P(B1 | A0,S1) P(B1 | A0,S2) P(B1 | A0,S3)
C1 P(C1 | A0,S0) P(C1 | A0,S1) P(C1 | A0,S2) P(C1 | A0,S3)
D1 P(D1 | A0,S0) P(D1 | A0,S1) P(D1 | A0,S2) P(D1 | A0,S3)

6 G.M. Green and S.C. Ahearn
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where K̂ is an estimate of kappa, n is the number of observations, nii are the diagonal
(correct) values of the error matrix, ni+ are the row totals (estimated classes), n+i are the
column totals (reference classes), and k is the number of classes (4). When the system is
run normally, it sets t0 to 2001 and t1 to 2011, and runs are limited to five 10-year
iterations.

Correctly distinguishing between inter-annual variability in satellite-based land-
cover products and actual deforestation and afforestation remains an ongoing research
problem, and there are significant issues in accurately inferring land-cover change
from MODIS products (e.g. Song et al. 2014). The focus of this present work is the
proof-of-concept for on-demand spatial modelling, and we perform preliminary model

Figure 1. Sample rasters for t0 and t1 (2001 and 2011) extracted from the MOD44 B product
shown in the background image. Key for inset images: black: water, no data, and fill values;
dark grey: <10% per cent tree cover; light grey: 10–49% tree cover; white: 50% tree cover and
above.

International Journal of Geographical Information Science 7
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validation as part of this description, apart from validation against ground truth.
Additional limitations include the accuracy of the underlying MOD44B product: the
5.1 (2011) version includes improvements over the earlier version (see the MOD44B
5.1 Users Guide, Townshend et al. 2011b), and the initial accuracy was assessed with
a root mean squared error (RMSE) of approximately 10% at two sets of validation
sites. Also, the binned representation of tree cover adopted by the model makes it less
sensitive to sub-pixel variability, and the simplified representation of spatial context
also limits the representation of other factors that can affect transition probabilities,
such as proximity to roads, which is strongly correlated with deforestation (see
Eastman 2012).

Sample areas

To evaluate the models generated by the on-demand process, we chose 10 sample areas
from diverse biomes, as shown in Figure 3 and Table 3. We refer to them by number in the
subsequent figures and discussion.

Sites 2 and 3 were used as calibration sites, and the parameters of the model that
visibly affected the results, and that affected the accuracy statistics, were adjusted. The
accuracy statistics described above were calculated by comparing the 2011 data to the
results from running the model for one time step from the 2001 data, resulting in reference
and simulated rasters that were compared. The model was calibrated by selecting the
measure of spatial context (the proportion of cells within the window that have a different
land-cover type than the current cell); the number of categories used to characterize the
spatial context (four); and the treatment of waterbodies and barren areas (these were
assumed to be invariant).

Results and discussion

Using the validation methods described above, generating a model from 2001 and 2006
and using it to predict 2011, then comparing the 2011 results to the actual 2011 data, for
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Figure 2. Transition probabilities extracted from the two sample rasters in Figure 1. The x-axis
shows the combination of spatial context S0 and tree-cover state X0 at t0. The y-axis shows the
estimated state X1 at t1. The shading represents the conditional probability of X1 given both X0 and
S0. A, B, C, and D represent the four tree-cover classes.
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the sample sites, the non-spatial results show an R2 of 0.98 and an RMSE of 2625 cells, or
18.2% of the mean pixel count for each land-cover class and site, as shown in the
scatterplot in Figure 4.

The high value for the coefficient of determination here does not necessarily reflect
accuracy in the model. Most per cent tree classes remain unchanged, and a simple
assumption of a constant state also results in a high R2 value. A more appropriate metric
is the kappa index of agreement, which is shown in Figure 5 for each site. A positive
value indicates agreement above chance, with values closer to 1 indicating more
complete non-chance agreement, 1.0 being perfect agreement, and −1.0 perfect
disagreement.

Table 4 shows the error matrix for all sites taken together, indicating an overall
agreement of 82%, and a per-class agreement varying between 73% and 88%. Class A,
which encompasses water, fill, and no data values, shows full agreement because the data
summarization methods exclude those pixel changes from the input rasters in the current
implementation of the system.

1
2

3

4

5

6

7

8

9

10

Figure 3. Sample sites used to evaluate spatial Markov models.

Table 3. Sample sites used to evaluate spatial Markov models.

Site Description Coordinates

1 British Columbia, Canada 123°W 52°N 121°W 54°N
2 New England, USA 74°W 42°N to 72°W 44°N
3 Amazon Basin, Central Brazil 64°W 10°S 62°W 8°S
4 Northern Argentina 62°W 27°S 60°W 25°S
5 Gabon, Central Africa 13°E 0 15°E 2°S
6 East South Africa 29°E 25°S 31°E 23°S
7 Eastern Russia 33°E 56°N 35°E 58°N
8 Eastern India 83°E 20°N 85°E 22°N
9 Central China 106°E 33°N 108°E 35°N
10 Borneo 112°E 0 114°E 2°N
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Figure 4. Projected versus actual pixel counts per class and site (n = 40), with R2 = 0.98 and
RMSE = 2625 cells, or 18.2% of the mean reference value.
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Figure 5. Kappa index calculated for each site.
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Looking more closely at the per-site kappa values, we can see that Central Africa and
Borneo constitute the low range of values, while the Amazon Basin and North Eastern
USA show higher kappa values. Figure 6 shows the t0 and t1 rasters for the Central Africa
and Amazon Basin samples. Both the Central Africa and Borneo inputs show diffuse
patterns of forest-cover change. This is consistent with the results reported by Hansen
et al. (2013), who found a higher degree of small-scale fragmentation in Central Africa
versus sites in South America. The New England and Amazon Basin inputs show more
spatial coherence. The spatial Markov process relies on the spatial adjacency of landscape
change, and the wide range in kappa values is likely a symptom of the varying spatial
scale and pattern of the underlying causes of disturbance.

Computationally, performance is affected strongly by the maximum raster size per-
mitted by the system. For example, limiting the dimensions of the results to a maximum
of 200 pixels in either direction resulted in maximum processing time for a rectangular
region of interest of approximately 5 seconds for five time steps, while setting the
maximum to 400 increased the processing time to approximately 30 seconds. When the
region of interest is polygonal, the processing time increases with the complexity of the
polygon, and a large polygon can take several minutes to process.

Table 4. Error matrix for all sites combined.

2011 actual

2011 predicted N/A <10% 10–49% ≥50%

N/A 6,707 0 0 0 1
<10% 0 77,778 13,622 515 0.85
10–49% 0 21,065 142,955 32,397 0.73
≥50% 0 1,125 33,072 246,524 0.88

1 0.78 0.75 0.88 0.82

Central Africa 2011
Reference

Central Africa 2011
Estimate

Amazon 2011 Reference Amazon 2011 Estimate

Central Africa 2001 Central Africa 2006

Amazon 2001 Amazon 2006

Figure 6. Input and output rasters for the Central Africa and Amazon Basin sites. Key: black:
water, no data, and fill values; dark grey: <10% per cent tree cover; light grey: 10–49% tree cover;
white: 50% tree cover and above.
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Conclusion

In this paper we demonstrated a method of creating and running spatial Markov models
on demand, to infer approximate trends in land cover and their spatial arrangement over
time. This approach eliminates a number of practical barriers to the detection of land-use
change for any location on Earth. First, instead of requiring time-consuming data down-
loads, re-projection, and other data management tasks, the on-demand approach estimates
the trends and simulates future land-cover distributions on the fly. Second, the techniques
employed have been long-time components of the landscape modelling toolbox; making
them available online may help make them more readily accessible to a broader range of
end-users.

When the system is used to predict forested areas for the temporal range within which
reference data are available, the coefficient of determination is ~0.98, and the RMSE is
18.2% of the mean reference pixel count, across 10 sample sites and four tree-cover classes.
The spatial prediction shows moderate per-pixel accuracy across most of the sites, with
lower accuracy among sites with less spatially coherent patterns of change. Over longer
model timeframes, accuracy is likely to decrease as additional sources of disturbance and
change emerge that are not captured in the initial time steps used to create each model.

We expect the accuracy of these results to increase in future iterations of the applica-
tion. The current availability of global road network data (e.g. Open Street Map, open-
streetmap.org) suggests that the accuracy of the system could be improved by
incorporating distance to roads among its set of spatial predictors, using on-demand
access to road network data. As more years of MODIS land-cover data accumulate, we
also expect the value and reliability of the predictions to increase as well. Additional
enhancements include optimizing the simplification of land-cover classes based on the
classes present in each input area. Similarly, optimizing the definition of each spatial and
temporal neighbourhood to account for the differing rates and patterns of change in
different regions of interest and at different spatial scales should also improve the
relevance and accuracy of the results.
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